
©2016 Published in 4th International Symposium on Innovative Technologies in
Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey)

*Corresponding author: Address: Faculty of Engineering, Department of Computer Engineering Bilecik Şeyh

Edebali University, Bilecik TURKEY. E-mail address: cihan.karakuzu@bilecik.edu.tr.

A Novel Modeling Network Structure and Its Heuristic Learning Performance

1Gizem Ataç Kale and*1Cihan Karakuzu

1Department of Computer Engineering, Bilecik Şeyh Edebali University, Bilecik,TR

Abstract

In this research, we introduce a novel network, Hybrid Radial Basis Function Neural Network

(HyrRbfNN), an artificial neural network (ANN) in which a hidden layer of radial basis function (RBF)

is integrated. The training of weight parameters is accomplished using improved particle swarm

optimization (iPSO). In total, the network has four layers. (3 hidden, 1 output) The learning

performance of our network has been compared to learning performance of adaptive-network based

fuzzy inference systems (ANFIS). Training measurement graphs, output and error surfaces of trained

methods are displayed for the both methods. The results has shown that our method provides much

better training performance.

Key words: System modeling, RBF, ANN, iPSO, Heuristic learning

1. Introduction

Artificial neural networks (ANN), influenced by human brain, are models that learn out of

available data and then provide appropriate output on different data [1]. ANN are used in the

modeling of nonlinear system relationships. In this manner, ANN has a wide range of

applications such as data association, data interpretation, data filtering, signal processing, image

and speech recognition, etc.

Radial basis function network (RBFN) is a specific type of multi layered and feed forward neural

networks [2]. RBFN is a structure which is formed using a hidden layer of radial basis

functions(RBF) and they are used in classification and prediction applications. Lu et al.

developed a sequential learning scheme for function approximation using minimal RBF neural

networks [3]. Yang et al. designed a novel self-constructing RBF neural-fuzzy system [4].

Particle swarm optimization (PSO) is a population based optimization technique which is

influenced by the manners of bird swarms and designed for the solution of non-linear problems

[5]. System is commenced with a population that includes random solutions and investigates

optimum solution by updating the generations. PSO does not necessarily need derivation

information that are different than the classical optimization techniques. PSO is simple because

of its low number of parameters. Successful applications of PSO include function optimization,

fuzzy system control, training of ANN. Sermpinis et al. investigated forecasting foreign

exchange rates with adaptive neural networks using radial-basis functions and particle swarm

optimization [6]

Adaptive-network based fuzzy inference systems, namely ANFIS, was developed by Jang and is

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 644

a kind of ANN that is based on Takagi-Sugeno fuzzy inference system [7], [8]. ANFIS integrates

neural networks and fuzzy logic principles in a single framework. Using a set of fuzzy IF-THEN

rules, ANFIS inference system has the learning capability to approximate non-linear functions

which makes it a universal estimator.

In this research, by integrating RBF, we design an ANN in which the training of weight

parameters is accomplished using improved PSO (iPSO). Since the rival of our method is ANFIS,

we have compared our results with the performance of ANFIS. In the following sections, it will

be demonstrated that our network learning performance is much better, especially on uneven

surfaces.

2. Hybrid Radial Basis Function Neural Network (HybRbfNN)

This section introduces the novel network structure which is announced the first-time in [9] by

Cihan Karakuzu.

2.1. Structure of HybRbfNN

In this research, we define a novel network. This is HybRbfNN that designed in 4 layers with {2,

10, 2, 3, 1} units, by integrating RBF to ANN and the Peaks function [10] is what we aim to

model. Regarding Figure 1, HybRbfNN has a network structure that has x1 and x2as inputs. In the

RBF layer, the Gaussian function which is an RBF is used. Following the RBF layer, in the

summation layer (S layer), summation operation is performed and θ is a matrix that includes this

layer weighting parameters. In the NN layer, is a matrix that includes that this layer’s weighting

parameters and the ANN activation function tansig is used. Finally, at the output layer, γ is a

vector that includes this layer weighting parameters.

Figure 1: HybRbfNNnetwork structure.

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 645

The first hidden layer which is the RBF layer associates an input data to a certain cluster. Each

neuron' s function of the first hidden layer is defined in Equation 1. The advantage of RBF lies in

its flexible modeling ability for the sharp transitions and multi minima/maxima on input-output

mapping surface. Connections of this layer are unit and they forward inputs to the neurons in this

layer. For this layer, let us define nRBF as the number of neurons within this particular hidden

layer.

𝑜1𝑖
= µ𝑐𝑖

(||𝐱 − 𝐜𝐢||) = 𝑒
−

||𝒙−𝐜𝐢||2

𝜎𝑖
2

 (1)

Here, o1i denotes the output. RBF layer’s parameters are ci= [ci,1 ci,2] center vectors and σi

standard deviations for each neuron of this layer for two inputs.

The second hidden layer which is defined as summation layer(S layer), has weighting

connections , between output of the first hidden layer and this layer’s neurons. The neurons of

this layer weight RBF layer output values with as shown in Equation 2 and then sum up them.

The output is o2i . In this layer, nS stands for the number of neurons in this hidden layer.

𝑜2𝑖
= 𝑜1𝑖

𝜃𝑖𝑗 = µ𝑐𝑖
(||𝐱 − 𝐜𝐢||)𝜃𝑖𝑗 (2)

Neural network layer(NN layer) is the third and final hidden layer. The functionality of each

neuron is displayed in Equation 3. The extra gradient parameter A differs this neuron from

conventional neuron activation functions. There are two types of parameters in this hidden layer

which are connection weights () and gradients (A). Output is o3 . Integer variable nNN describes

the number of neurons in this hidden layer.

𝑜3 = 𝜑(𝑜2 × 𝜔) =
2

(1+𝑒−2𝐴×(𝑜2× 𝜔))
− 1 (3)

The last layer is the output layer which forms the output by combining the weighted () the

previous layer outputs and the functionality of each neuron is described in Equation 4. o4 denotes

the output.

𝑜4 = 𝑜3 × 𝛾 (4)

2.2 Heuristic Learning of HybRbfNN

The center vectors ci point out the central point of multi dimensional Gaussian functions in the

input domain. Let us denote the set of these vectors with C matrix. The S layer weighting

parameters are collated in the matrix . NN layer weighting parameters are listed in the matrix

as mentioned in the previous subsection and gradient parameter vector is A. Finally, γ is the

vector that includes the output layer parameters.

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 646

Using iPSO, training of the four parameters are displayed below in Equation 5. Here, a particle

structure pi is defined which is the ith row of a particle swarm matrix.

𝐩𝑖 = [𝑐1,1𝑐1,2 … 𝑐𝑚,1 𝑐𝑚,2𝜎1 … 𝜎𝑚 𝜃1 … 𝜃𝑗 𝜔1 … 𝜔𝑘𝐴1 … 𝐴𝑙𝛾1 … 𝛾𝑙] (5)

In the Equation 5, m represents the number of RBF layer neurons (nRBF), whereas j is an integer

of the product of nRBF and nS. The integer product nS x nNN is k and finally l is the number of

neurons in the NN layer.

These parameters mentioned in the previous paragraph are determined by a heuristic learning

algorithm in this research using an improved PSO (iPSO) [11] algorithm as shown in Equation 6

and 7. Detailed information about the algorithm and its parameters can be seen in [11].

vi(n + 1) = ξ [vi(n) + α1r1 (pb,i − pi(n)) + α2r2 (gb,i − pi(n))] + [α3λ(n)] (6)

𝑝𝑖(𝑛 + 1) = 𝑝𝑖(𝑛) + 𝑣𝑖(𝑛 + 1) (7)

Here, vi is the velocity of the particle, i.e. the Cartesian Coordinate update value. ξ is the

construction factor and in most applications equals to 0.76. α1 and α2 are the learning rate

constants which are picked as 2.1. r1 and r2 uniformly distributed random values which has a

range of [0, 1). pi is the particle structure as mentioned in the previous paragraph. pb is the local

best which is the best position memorized by each particle and gb is the global best which is the

best position of every local best obtained. α3 is the additive learning constant and has to be picked

according to the Equation 8. λ is a normally distributed random number vector.

∝3≪
1

𝑚𝑎𝑥{𝑒𝑖𝑔(𝑋𝑋𝑇)}
 (8)

3. System Modeling Example and Its Comparison with ANFIS

In this research, modeling efficiency of HybRbfNN has been shown using Peaks function which

has multiple extremums since it is useful in three-dimensional plots. Peaks is obtained by

translating and scaling two variable Gaussian distributions and mathematically expressed in

Equation 9 [10].

𝑧 = 𝑝𝑒𝑎𝑘𝑠(𝑥, 𝑦) = 3(1 − 𝑥)2𝑒(−𝑥2−(𝑦+1)2) − 10 (
𝑥

5
− 𝑥3 − 𝑦5) 𝑒(−𝑥2−𝑦2) −

1

3
𝑒(−(𝑥+1)2−𝑦2) (9)

As a demonstration, HybRbfNN is used to model the function shown in Equation 9. For this

purpose, parameters of HybRbfNN is tuned or learned by iPSO with a single swarm using the

concept described in the previous paragraphs. During the learning process, each particle is

evaluated by the fitness value given in Equation 10 which considers the error between desired

output (𝑧𝑑) and actual output of HybRbfNN (𝑧𝑎).

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 647

𝑓𝑖𝑡 =
1

𝑁
∑ (𝑧𝑑 − 𝑧𝑎)2𝑁

𝑖=1 (10)

Learning of HybRbfNN has been implemented using the following iPSO algorithm parameters:

swarm size (the number of the particles) is 186 for the swarm; learning constants 𝜉=0.76,

α1=α2=2.1, α3=0.0012; the number of generation/iteration Gmax= 300. Learning of ANFIS has

been implemented using the same iPSO algorithm parameters of HyrRbfNN except the swarm

size of ANFIS is 60.

Figure 2 shows the learning performance of the modeling. For the given learning, standard

deviations of the first layer’s nodes were kept fixed as unity.

Figure 2:Learning performance of HyrRbfNN: Training course (a), Output surface (b) and error surface (c) of trained

network

The 2-input, 1-output and 5-layer (total) ANFIS structure we use has 4 rule Sugeno type fuzzy

inference method. The structure has two fuzzy sets each having two neurons and as membership

function, Gaussian activation function is used. The central points and standard deviations

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 648

(antecedent parameters), rule or consequent parameters are trained via iPSO. Figure 3 displays

learning performance of ANFIS.

Figure 3: Learning performance of ANFIS: Training course (a), Output surface (b) and error surface (c) of trained

network

4. Discussion

Although ANFIS is a popular network model, our network model HyrRbfNN clearly outperforms

it as shown in Figure 2 and 3. Heuristic learning of the two networks using iPSO has been

performed ten times to compare statistically with each other. Obtained statistical results are given

in Table 1. In the table, initial and final fitness values of the global best particle at the first and

the last generation are given in the columns named as First and Last respectively. Mean of the

global best particles’ fitness values throughout training course is given in the column named as

Mean. As can be seen clearly on both the figures and the table, HyrRbfNN outperforms than

ANFIS. For example, regarding Table 1, in the 7th run, the last training course value of ANFIS is

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 649

1.59982566. On the other hand, the last training course value of HyrRbfNN is 0.04305355 which

is far too close to 0 in the same run. HyrRbfNN has more parameters than ANFIS; however, it is

much more successful, especially on slopes, sharp transitions and uneven surfaces.

Table 1.Comparison of learning performance of HyrRbfNN and ANFIS

 HyrRbfNN ANFIS

Run First Last Mean First Last Mean

1 3.05247084 0.09704854 0.55308577 2.81004351 1.66240576 1.84384968

2 3.05246870 0.09973391 0.44641125 2.80639244 1.94190508 2.07711224

3 3.05246191 0.95657352 1.15240545 2.82877895 1.95365058 2.07041582

4 3.05245971 0.15725067 0.43714378 2.84856796 2.20795477 2.25250595

5 3.05247025 0.07178905 0.35753075 2.82092960 1.95819235 2.02286796

6 3.05246125 0.04843998 0.34222334 2.80083656 2.24005271 2.27247340

7 3.05245696 0.04305355 0.34138577 2.81939214 1.59982566 1.87428082

8 3.05245740 0.05183595 0.31814243 2.79383574 2.41294341 2.43651952

9 3.05246208 0.06584072 0.29879856 2.82108382 2.39282785 2.43137310

10 3.05246964 0.09857568 0.69321935 2.79224192 1.95536564 2.03181721

Conclusions

HyrRbfNN is a novel network structure where we have integrated RBF into ANN in which the

training of weight parameters were accomplished using iPSO. The learning performance of

HyrRbfNN has been compared to the learning of performance of ANFIS. The given results and

Discussions section clearly show that HyrRbfNN provides better learning performance.

HyrRbfNN can be a useful in problems including uneven surfaces and sharp transitions.

References

[1] Simon Haykin, Neural Networks : A comprehensive Foundation.: Prentice Hall, 1998.

[2] Martin D. Buhmann, Radial Basis Functions: Theory and Implementations.: Cambridge University

Press, 2003.

[3] N. Sundararajan, P. Saratchandran Lu Yingwei, "A Sequential Learning Scheme for Function

Approximation Using Minimal Radial Basis Function Neural Networks," Neural Computation, vol. 9,

no. 2, pp. 461-478, Feb 1997.

[4] Tsung-Ying Sun, Chih-Li Huo, Yu-Hsiang Yu, Chan-Cheng Liu, Cheng-Han Tsai Ying-Kuei Yang, "A novel

C.KARAKUZU et al./ ISITES2016 Alanya/Antalya - Turkey 650

self-constructing Radial Basis Function Neural-Fuzzy System," Applied Soft Computing, vol. 13, no. 5,

pp. 2390-2404, May 2013.

[5] J. Eberhart, R. C. Kennedy, "Particle Swarm Optimization," in IEEE International Conference on

Neural Networks, vol. IV, Piscataway, NJ, 1995, pp. 1942-1948.

[6] Konstantinos Theofilatos, Andreas Karathanasopoulos, Efstratios F. Georgopoulos, Christian Dunis

Georgios Sermpinis, "Forecasting foreign exchange rates with adaptive neural networks using radial-

basis functions and Particle Swarm Optimization ," European Journal of Operational Research , vol.

225 , no. 3 , pp. 528-540 , March 2013.

[7] Jyh-Shing R. Jang, "Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter

Algorithm," , Anaheim, CA, USA., 1991, pp. 762-767.

[8] Jyh-Shing R. Jang, "ANFIS: adaptive-network-based fuzzy," IEEE Transactions on Systems, Man and

Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.

[9] Cihan Karakuzu, "New Fuzzy-Neural Network Model and Its Learning Using Heuristic," in

International Congress on Natural and Engineering Sciences Abstract Book, Sarajevo, Bosnia and

Herzegovina, 9-13 September, 2015, p. 10.

[10] Anonymous. Peaks Function (Matlab Style). [Online].

http://finzi.psych.upenn.edu/library/pracma/html/peaks.html

[11] Cihan Karakuzu, Fuat Karakaya Mehmet Ali Çavuşlu, "Neural identification of dynamic systems on

FPGA with improved PSO learning," Applied Soft Computing, vol. 12, no. 9, pp. 2707-2718, Sep.

2012.

http://finzi.psych.upenn.edu/library/pracma/html/peaks.html

