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Abstract 
 
In this research, we introduce a novel network, Hybrid Radial Basis Function Neural Network 

(HyrRbfNN), an artificial neural network (ANN) in which a hidden layer of radial basis function (RBF) 

is integrated. The training of weight parameters is accomplished using improved particle swarm 

optimization (iPSO). In total, the network has four layers. (3 hidden, 1 output) The learning 

performance of our network has been compared to learning performance of adaptive-network based 

fuzzy inference systems (ANFIS). Training measurement graphs, output and error surfaces of trained 

methods are displayed for the both methods. The results has shown that our method provides much 

better training performance. 
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1. Introduction 

 

Artificial neural networks (ANN), influenced by human brain, are models that learn out of 

available data and then provide appropriate output on different data [1]. ANN are used in the 

modeling of nonlinear system relationships. In this manner, ANN has a wide range of 

applications such as data association, data interpretation, data filtering, signal processing, image 

and speech recognition, etc. 

 

Radial basis function network (RBFN) is a specific type of multi layered and feed forward neural 

networks [2]. RBFN is a structure which is formed using a hidden layer of radial basis 

functions(RBF) and they are used in classification and prediction applications. Lu et al. 

developed a sequential learning scheme for function approximation using minimal RBF neural 

networks [3].  Yang et al. designed a novel self-constructing RBF neural-fuzzy system [4]. 

 

Particle swarm optimization (PSO) is a population based optimization technique which is 

influenced by the manners of bird swarms and designed for the solution of non-linear problems 

[5]. System is commenced with a population that includes random solutions and investigates 

optimum solution by updating the generations. PSO does not necessarily need derivation 

information that are different than the classical optimization techniques. PSO is simple because 

of its low number of parameters. Successful applications of PSO include function optimization, 

fuzzy system control, training of ANN. Sermpinis et al. investigated  forecasting foreign 

exchange rates with adaptive neural networks using radial-basis functions and particle swarm 

optimization [6] 

 

Adaptive-network based fuzzy inference systems, namely ANFIS, was developed by Jang and is 
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a kind of ANN that is based on Takagi-Sugeno fuzzy inference system [7], [8]. ANFIS integrates 

neural networks and fuzzy logic principles in a single framework. Using a set of fuzzy IF-THEN 

rules, ANFIS inference system has the learning capability to approximate non-linear functions 

which makes it a universal estimator. 

 

In this research, by integrating RBF, we design an ANN in which the training of weight 

parameters is accomplished using improved PSO (iPSO). Since the rival of our method is ANFIS, 

we have compared our results with the performance of ANFIS. In the following sections, it will 

be demonstrated that our network learning performance is much better, especially on uneven 

surfaces. 

 

2. Hybrid Radial Basis Function Neural Network (HybRbfNN) 

 

This section introduces the novel network structure which is announced the first-time in [9] by 

Cihan Karakuzu. 

  

2.1. Structure of HybRbfNN 

 

In this research, we define a novel network. This is HybRbfNN that designed in 4 layers with {2, 

10, 2, 3, 1} units, by integrating RBF to ANN and the Peaks function [10] is what we aim to 

model. Regarding Figure 1, HybRbfNN has a network structure that has x1 and x2as inputs. In the 

RBF layer, the Gaussian function which is an RBF is used. Following the RBF layer, in the 

summation layer (S layer), summation operation is performed and θ is a matrix that includes this 

layer weighting parameters. In the NN layer, is a matrix that includes that this layer’s weighting 

parameters and the ANN activation function tansig is used. Finally, at the output layer, γ is a 

vector that includes this layer weighting parameters. 

 

 
 

Figure 1: HybRbfNNnetwork structure. 
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The first hidden layer which is the RBF layer associates an input data to a certain cluster. Each 

neuron' s function of the first hidden layer  is defined in Equation 1. The advantage of RBF lies in 

its flexible modeling ability for the sharp transitions and multi minima/maxima on input-output 

mapping surface. Connections of this layer are unit and they forward inputs to the neurons in this 

layer. For this layer, let us define nRBF as the number of neurons within this particular hidden 

layer. 

 

𝑜1𝑖
= µ𝑐𝑖

(||𝐱 − 𝐜𝐢||) = 𝑒
−

||𝒙−𝐜𝐢||2

𝜎𝑖
2

                                            (1) 

 

Here, o1i denotes the output. RBF layer’s parameters are ci= [ci,1  ci,2] center vectors and σi 

standard deviations for each neuron of this layer for two inputs. 

  

The second hidden layer which is defined as summation layer(S layer), has weighting 

connections , between output of the first hidden layer and this layer’s neurons. The neurons of 

this layer weight RBF layer output values with  as shown in Equation 2 and then sum up them. 

The output is o2i . In this layer, nS stands for the number of neurons in this hidden layer. 

 

𝑜2𝑖
= 𝑜1𝑖

𝜃𝑖𝑗 = µ𝑐𝑖
(||𝐱 − 𝐜𝐢||)𝜃𝑖𝑗                                            (2) 

 

Neural network layer(NN layer) is the third and final hidden layer. The functionality of each 

neuron is displayed in Equation 3. The extra gradient parameter A differs this neuron from 

conventional neuron activation functions.  There are two types of parameters in this hidden layer 

which are connection weights () and gradients (A). Output is o3 . Integer variable nNN describes 

the number of neurons in this hidden layer. 

 

𝑜3 = 𝜑(𝑜2 ×  𝜔) =
2

(1+𝑒−2𝐴×(𝑜2× 𝜔))
− 1                                     (3) 

 

The last layer is the output layer which forms the output by combining the weighted () the 

previous layer outputs and the functionality of each neuron is described in Equation 4. o4 denotes 

the output.  

 

𝑜4 = 𝑜3 ×  𝛾                                                               (4) 

 

 

2.2 Heuristic Learning of HybRbfNN  

 

The center vectors ci point out the central point of multi dimensional Gaussian functions in the 

input domain. Let us denote the set of these vectors with C matrix. The S layer weighting 

parameters are collated in the matrix . NN layer weighting parameters are listed in the matrix  

as mentioned in the previous subsection and gradient parameter vector is A. Finally, γ is the 

vector that includes the output layer parameters. 
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Using iPSO, training of the four parameters are displayed below in Equation 5. Here, a particle 

structure pi is defined which is the ith row of a particle swarm matrix. 

 

𝐩𝑖 =  [𝑐1,1𝑐1,2 … 𝑐𝑚,1 𝑐𝑚,2𝜎1 … 𝜎𝑚 𝜃1 … 𝜃𝑗  𝜔1 … 𝜔𝑘𝐴1 … 𝐴𝑙𝛾1 … 𝛾𝑙]  (5) 

 

In the Equation 5, m represents the number of RBF layer neurons (nRBF), whereas j is an integer 

of the product of nRBF and nS. The integer product nS x nNN is k and finally l is the number of 

neurons in the NN layer. 

 

These parameters mentioned in the previous paragraph are determined by a heuristic learning 

algorithm in this research using an improved PSO (iPSO) [11] algorithm as shown in Equation 6 

and 7. Detailed information about the algorithm and its parameters can be seen in [11]. 

 

vi(n + 1) = ξ [vi(n) + α1r1 (pb,i − pi(n)) + α2r2 (gb,i − pi(n))] + [α3λ(n)]        (6) 

 

𝑝𝑖(𝑛 + 1) = 𝑝𝑖(𝑛) + 𝑣𝑖(𝑛 + 1)                                                  (7) 

 

Here, vi is the velocity of the particle, i.e. the Cartesian Coordinate update value. ξ is the 

construction factor and in most applications equals to 0.76. α1 and α2 are the learning rate 

constants which are picked as 2.1. r1 and r2 uniformly distributed random values which has a 

range of [0, 1). pi is the particle structure as mentioned in the previous paragraph. pb is the local 

best which is the best position memorized by each particle and gb is the global best which is the 

best position of every local best obtained. α3 is the additive learning constant and has to be picked 

according to the Equation 8. λ is a normally distributed random number vector. 

 

∝3≪
1

𝑚𝑎𝑥{𝑒𝑖𝑔(𝑋𝑋𝑇)}
                   (8) 

 

3. System Modeling Example and Its Comparison with ANFIS 

 

In this research, modeling efficiency of HybRbfNN has been shown using  Peaks function which 

has multiple extremums since it is useful in three-dimensional plots. Peaks is obtained by 

translating and scaling two variable Gaussian distributions and mathematically expressed in 

Equation 9 [10]. 

 

𝑧 = 𝑝𝑒𝑎𝑘𝑠(𝑥, 𝑦) = 3(1 − 𝑥)2𝑒(−𝑥2−(𝑦+1)2) − 10 (
𝑥

5
− 𝑥3 − 𝑦5) 𝑒(−𝑥2−𝑦2) −

1

3
𝑒(−(𝑥+1)2−𝑦2) (9) 

 

As a demonstration, HybRbfNN is used to model the function shown in Equation 9. For this 

purpose, parameters of HybRbfNN is tuned or learned by iPSO with a single swarm using the 

concept described in the previous paragraphs. During the learning process, each particle is 

evaluated by the fitness value given in Equation 10 which considers the error between desired 

output (𝑧𝑑) and actual output of HybRbfNN (𝑧𝑎). 
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𝑓𝑖𝑡 =
1

𝑁
∑ (𝑧𝑑 − 𝑧𝑎)2𝑁

𝑖=1                                                             (10) 

 

Learning of HybRbfNN has been implemented using the following iPSO algorithm parameters: 

swarm size (the number of the particles) is 186 for the swarm; learning constants 𝜉=0.76, 

α1=α2=2.1, α3=0.0012; the number of generation/iteration Gmax= 300. Learning of ANFIS has 

been implemented using the same iPSO algorithm parameters of HyrRbfNN except the swarm 

size of ANFIS is 60. 

 

Figure 2 shows the learning performance of the modeling. For the given learning, standard 

deviations of the first layer’s nodes were kept fixed as unity. 

 

 
 

Figure 2:Learning performance of HyrRbfNN: Training course (a), Output surface (b) and error surface (c) of trained 

network 

 

The 2-input, 1-output and 5-layer (total) ANFIS structure we use has 4 rule Sugeno type fuzzy 

inference method. The structure has  two fuzzy sets each having two neurons and as membership 

function, Gaussian activation function is used. The central points and standard deviations 



 

C.KARAKUZU  et al./ ISITES2016 Alanya/Antalya - Turkey 648 

 

 

 

(antecedent parameters), rule or consequent parameters are trained via iPSO. Figure 3 displays 

learning performance of ANFIS. 

 

 

 
 

Figure 3: Learning performance of ANFIS: Training course (a), Output surface (b) and error surface (c) of trained 

network 

 

 

4. Discussion 

 

Although ANFIS is a popular network model, our network model HyrRbfNN clearly outperforms 

it as shown in Figure 2 and 3. Heuristic learning of the two networks using iPSO has been 

performed ten times to compare statistically with each other. Obtained statistical results are given 

in Table 1. In the table, initial and final fitness values of the global best particle at the first and 

the last generation are given in the columns named as First and Last respectively. Mean of the 

global best particles’ fitness values throughout training course is given in the column named as 

Mean. As can be seen clearly on both the figures and the table, HyrRbfNN outperforms than 

ANFIS. For example, regarding Table 1, in the 7th run, the last training course value of ANFIS is 
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1.59982566. On the other hand, the last training course value of HyrRbfNN is 0.04305355 which 

is far too close to 0 in the same run. HyrRbfNN has more parameters than ANFIS; however, it is 

much more successful, especially on slopes, sharp transitions and uneven surfaces. 
 

 

 

Table 1.Comparison of learning performance  of HyrRbfNN and ANFIS  

 
 HyrRbfNN ANFIS 

Run First Last Mean First Last Mean 

1 3.05247084 0.09704854 0.55308577 2.81004351 1.66240576 1.84384968 

2 3.05246870 0.09973391 0.44641125 2.80639244 1.94190508 2.07711224 

3 3.05246191 0.95657352 1.15240545 2.82877895 1.95365058 2.07041582 

4 3.05245971 0.15725067 0.43714378 2.84856796 2.20795477 2.25250595 

5 3.05247025 0.07178905 0.35753075 2.82092960 1.95819235 2.02286796 

6 3.05246125 0.04843998 0.34222334 2.80083656 2.24005271 2.27247340 

7 3.05245696 0.04305355 0.34138577 2.81939214 1.59982566 1.87428082 

8 3.05245740 0.05183595 0.31814243 2.79383574 2.41294341 2.43651952 

9 3.05246208 0.06584072 0.29879856 2.82108382 2.39282785 2.43137310 

10 3.05246964 0.09857568 0.69321935 2.79224192 1.95536564 2.03181721 

 

 

 

 

Conclusions 

 

HyrRbfNN is a novel network structure where we have integrated RBF into ANN in which the 

training of weight parameters were accomplished using iPSO. The learning performance of 

HyrRbfNN has been compared to the learning of performance of ANFIS. The given results and 

Discussions section clearly show that HyrRbfNN provides better learning performance. 

HyrRbfNN can be a useful in problems including uneven surfaces and sharp transitions. 
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